Leveraging Data-Driven Analysis for Integrated Pest Management and Pathogen Remediation

ΤМ

Agenda

- Using Data for IPM Program Decisions
- Using Data for Pathogen Remediation
 - Elimination of unresolved pathogen issues

Integrated Pest Management

Many definitions – Data driven!

- Use of current, historical & comprehensive information on the life cycles & habits of pests
- An environmentally sound approach to IPM
- Quality pest management utilizing the least hazardous chemicals & techniques
- The "best management practice" for IPM

Principles of IPM

Weekly Inspections

- Review of current conditions
- Snapshot of the program

Periodic Review

- Trend data review
- Review IPM program

<u>Audit</u>

- Higher level review
- Assess overall compliance

THE PEST MANAGEMENT PYRAMID

Data Analysis

- Data on pest activity noted on service reports "snapshot"
- Data management over time, IPM mapping & trend reviews"Photo album?"
- E-Notebooks provide ease of access
- Requires skill and insight to analyze and make adjustments!

•

Every Facility is Unique

- Two identical facilities may produce different products
 May need different IPM programs
- Every facility needs their own IPM assessment
 - Identify risks and gaps
- Pest risk is identified based on:
 - Products being produced
 - Risk factors such as facility integrity and the environment

What is Proactive IPM?

- Identify the *potential* causes of pest risk for the product and the facility
- Design IPM program based on the potential risks and gaps identified
- Preventative measures are integrated into the IPM program to mitigate the risks and gaps

Proactive Actions

Rodents - Identify areas of potential risk

- Year-round threats
- Populations are on the increase
- Identify and eliminate harborage
- Immediate reaction to indoor sighting

Birds - Identify areas of potential risk

- Reduce attractive spillage, waste & standing water
- More proactive, more options
- Be prepared with a plan/materials for indoor birds

Insects - Identify areas of potential risk

- What do data trends reveal about what/when to expect?
- Plan timely barrier treatments outdoors
- ILTs in good condition, placed properly, fresh bulbs installed and ready for the new season?

Partnership & Plant Responsibilities

- Communication and cooperation is essential
 - Technician discussion with plant contact before service begins and exit meeting
 - Coordination among all players: sanitation, QC, maintenance, operations and others...
 - PCQI can quarterback internal efforts
- Know your facility
 - Inside, outdoors, roof, hidden rooms, etc.
 - Understand equipment and processes
 - Understand contents of service notebooks and E-notebooks

What You Can Do: Sanitation, Exclusion & Maintenance

ТΜ

- Create a IPM culture at your facility!
- Monthly facility inspections
- Master sanitation schedule is a living document
- Contribute to the general sanitation effort:
 - Respect sanitation lines
 - Keep locker and lunch areas clean
 - Clean up spillages and remove damaged product
- Report pest activity promptly
- Respect pest control devices
- Do not encourage birds or wildlife!

VIRA. TM

Leveraging Data-Driven Analysis for Pathogen Remediation

Typical customer data path to a chlorine dioxide treatment

Chlorine dioxide sterilizes the treated area / equipment

When is chlorine dioxide a good solution?

- 1. <u>Unresolved customer findings</u> of presumptive pathogen hits for a number of weeks or months and just can't remediate themselves
- 2. <u>FDA has inspected & swabbed and found issues</u> that the customer needs to document a 'fix'. FDA will then return at some point and reswab so the customer better get it done right, and be able to show FDA they took it seriously
- **3.** <u>The prospect's customer has stopped buying</u> until they could prove the pathogen was completely gone
- 4. <u>New construction (or tarping new equipment)</u> to assure that no pathogens have been brought in during the construction process less typical than response to a known pathogen

Most common: Dairy, Baking, Ready-to-Eat & Pet Foods

Unresolved contamination requires a 'Clean Break'

Clean Break: <u>documented scientific</u> evidence that <u>all</u> contact surfaces have been cleaned and decontaminated and <u>100% free from microbial contamination</u>.

Elements of a clean break:

- Effectively sanitized & decontaminated
- Zero microbial contamination
- Documented scientific evidence

Why is gas more effective?

- Microbes are airborne and can get into every nook and cranny
- Sprays, fogs and foams don't reach all areas
- Chlorine dioxide leaves no residue so no post-treatment sanitation required
 - Degrades to oxygen and chlorite ions (part-per-trillion) upon exposure to outside aeration
- Chlorine dioxide is the only gas form sterilant
 - Fogs are sometimes referred to as "dry"; but actually just a small droplet
 - Dry steam works well on smaller (tarped) equipment, but not in a large treatment area
- Non-gas disinfectants can not physically reach all areas requiring remediation

Hand wipe or spray

Liquid or foam spray

Vapors & Fogging (wet or dry)

UV light source ->

IFC

When to consider chlorine dioxide?

- When routine sanitation methods are not delivering the desired results
 - Consistently finding 'presumptives' in Zones 2 and/or 3
- FUMIGATION vs. FOGGING
 - FUMIGATION: to confirm a clean break for a known pathogen problem
 - Once and 'done'. A clean break to confirm pathogen threats have been eliminated (aka: hard reset, 6-log kill)
 - FOGGING/VAPOR: to minimize and prevent future outbreaks, but not always a complete kill
 - Most often a routine treatment monthly / quarterly
- Chlorine dioxide
 - Destroys biofilms, Listeria, Salmonella and all microbial life (mold, mildew, virus)
 - Microbes can't build up resistance (destroys the DNA)
 - Minimal material compatibility concerns
- Plant operations can resume immediately
 - No post-treatment cleaning required

The facts about chlorine dioxide gas?

- Chemical formula is ClO₂
- <u>Registered</u> and <u>approved</u> by EPA as a sterilant
 - Approved by USDA and FDA for food processing
 - Sterilant = confirm kill of 100% of all spores per rigorous EPA test protocol
 - Organic, Kosher and Halal certified
- Applied as a real gas (as fumigant)
 - Fills the entire treatment area equally
- It is a visible yellow-green gas and has an odor like chlorine
- Is NOT chlorine gas and is NOT poisonous or carcinogenic
- Is NOT explosive when fumigating
- No post-application cleaning needed prior to resuming operations
- Compatible with all metals, plastics and electronics in a food plant
 - Exception being unpainted mild steel that is likely already rusted if present

Within 90 minutes of starting

Biofilms – microscopic bacterial 'colonies'

- Biofilms are invisible and difficult to eliminate
- Chlorine dioxide destroys biofilms
- Independent lab testing by an accredited university biofilm research center
 - A biofilm was grown to a size of >100 million cells (Log8)
 - Much larger biofilm than would be found on a routinely cleaned piece of equipment
 - Chlorine dioxide gas applied for 4 hours at ~250 ppm
 - <u>100% kill no detectable life</u>
 - Dosage = 1,000 ppm*hours dosage
- Typical IFC gas fumigation is 1,500 2,000 ppm*hours

Corrosion potential(s)

Chlorine dioxide material compatibility vs other decontamination agents

Source: EPA, July 2011 Homeland Security Research Workshop

Decontaminating Agent	Oxidation / Corrosion Potential (V)	
Ozone	2.07	
Peracetic Acid	1.81	e
Hydrogen Peroxide	1.78	Aor
Bleach	1.49	
Chlorine Dioxide	0.95	•

Chlorine dioxide far less corrosive than any other chemical used for food processing plant sanitation

Environmental factors & efficacy

- Humidity
 - Higher humidity always best for microbial destruction
 - Opposite of insect fumigations
- Light
 - UV light increases chlorine dioxide decomposition
 - LED lighting is fine
 - Always best to have lights turned off during fumigation
- Temperature
 - Works best at temperatures above 5 $^\circ C$ (41 $^\circ$ F)

The Importance of Proper Sealing

- IFC
- Sealing the treatment area to contain the gas is one of the most important factors in a successful treatment
- IFC services:
 - Complete sealing of treatment area, including tarping equipment (if needed) and roof venting
 - Routine perimeter checks to assure seals remain intact
 - Utilize SCBA so we can enter the treatment area if needed to reseal if leaks detected

Fumigation Examples: Small to medium size applications

Partial or entire processing plants

Recap and Questions

Pathogen Remediation

- From small applications to entire plant
- New construction / equipment
- Unresolved microbial contamination problems
- Fumigations are designed to be a once-and-done treatment and will sterilize the environment and achieve a 'clean break' = 6-Log Kill!

Data-Driven IPM

- Data identifies trends and opportunities
- Proactive Pest Management combines several key components to protect a given food production facility
- Sanitation, Maintenance & Exclusion are the primary elements
- IPM expertise in a food plant environment is critical

IFC Contact:

Steve Romero (210) 378-7044 sromero@indfumco.com IFC Contact: **Steve Flieder** (617) 510-2190 Steve.Flieder@indfumco.com

