Food Safety
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • TOPICS
  • PODCAST
  • EXCLUSIVES
  • BUYER'S GUIDE
  • MORE
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
  • SIGN UP!
cart
facebook twitter linkedin
  • NEWS
  • Latest News
  • White Papers
  • TOPICS
  • Contamination Control
  • Food Types
  • Management
  • Process Control
  • Regulatory
  • Sanitation
  • Supply Chain
  • Testing and Analysis
  • EXCLUSIVES
  • Food Safety Five Newsreel
  • eBooks
  • FSM Distinguished Service Award
  • Interactive Product Spotlights
  • Videos
  • MORE
  • ENEWSLETTER >
  • Store
  • Sponsor Insights
  • ENEWSLETTER >
  • Archive Issues
  • Subscribe to eNews
  • EMAG
  • eMagazine
  • Archive Issues
  • Editorial Advisory Board
  • Contact
  • Advertise
Food Safety
search
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!

Direct-Fed Microbials as Preharvest Interventions in Cattle Production

February 1, 2014

Microorganisms are both our friends and our foes in that they can cause deadly illnesses, but on the other hand, life would not be possible without them. With our ever-increasing understanding of microorganisms, we have learned in some instances to harness their beneficial properties to combat pathogens that can be detrimental to human health. Many people today are familiar with the term “probiotic,” especially as it pertains to beneficial microorganisms in yogurt and some dietary supplements. The term “probiotic” is commonly used to describe the use of beneficial bacteria that exhibit human health benefits. The concept of a direct-fed microbial (DFM) is very similar to that of a probiotic and the terms are often used interchangeably. Probiotics have been defined by Fuller[1] as a “live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance.” The U.S. Food and Drug Administration (FDA) uses the term “DFM” to define these products for use in animals.[2] FDA works with the Association of American Feed Control Officials (AAFCO) to regulate animal feed ingredients, including DFM. The AAFCO statement for defining DFM in animal feeds is “Contains a source of live (viable) naturally occurring microorganisms.”[2] Over the last several decades, research into the beneficial effects of DFM for companion animals and livestock has increased much like the information for probiotic benefits for humans. DFM studies have demonstrated improved feed efficiency, milk yields and overall growth and performance in livestock animals. Many DFM studies have also shown a decrease in pathogens carried on the hides and in the feces of livestock. This article will focus on DFMs as food safety interventions for cattle production. 

Pathogenic E. coli and Salmonella Presence in Cattle
It is well known that beef cattle harbor foodborne pathogens, such as Salmonella and Shiga-toxin producing Escherichia coli (STEC), in their digestive tracts.[3–6] Studies have reported a significant correlation between fecal and hide contamination with E. coli O157:H7 and subsequent carcass contamination. Results from a study conducted by Barkocy-Gallagher et al.[5] indicated an overall seasonal shedding variation for E. coli O157:H7, non-O157 serotypes and Salmonella in the commercial beef processing plants used in their study. The pathogen prevalence levels were found to be higher on the hides than in the feces. There are many postharvest interventions in place such as organic acid washes and steam pasteurization to reduce pathogen contamination due to fecal material and hides. Nevertheless, it is important to have effective and complementary preharvest interventions to provide added public health protection from farm to fork. 

Preharvest Interventions and Food Safety
A wide variety of DFM microorganisms are generally recognized as safe—or GRAS—for use in cattle. In the farm-to-fork dynamic, preharvest interventions such as the use of DFM can improve food safety and reduce public health risks. In addition to this, postharvest interventions may potentially be more effective if the incoming load of foodborne pathogens is decreased before the cattle arrive at processing plants.

A large number of studies have investigated the effect of DFM supplementation on growth and performance and pathogen carriage in beef cattle. As a preharvest food safety application, DFM products may be effective due to several modes of action. The mechanisms are strain dependent and may include the production of antimicrobial compounds such as hydrogen peroxide, organic acids and bacteriocins, competition for colonization sites and immune system stimulation. Rigorous strain selection and in vitro and in vivo testing is needed to develop DFM products that produce the desired results in an animal model.    

An example of a well-characterized DFM strain that reduces foodborne pathogens in live cattle is Lactobacillus acidophilus NP51, which has been commercially available for many years. This strain has been carefully selected and screened out of a pool of many isolates based on several characteristics in the laboratory and in live animals before a product was developed. More than 12 years of research support the food safety benefits of this DFM. Some of these research results are summarized below and are outlined in Table 1.[7–13]

Results of Bacterial Interventions
In the initial in vivo studies, Brashears et al.[7] blocked cattle by weight and randomly assigned them to a control group, a treatment group receiving 109/head/day of L. acidophilus NP51 (also known as NPC 747) or a treatment group receiving 109/head/day of L. crispatus NPC 750. The cattle receiving NP51 had significantly less fecal shedding of E. coli O157:H7. The control group was almost twice as likely to have a fecal sample positive for E. coli O157:H7 when compared with the NP51 group. Live weight-gain efficiency was not significantly different among the treatments. There was a trend for carcass-based gain and feed ratios to be improved for animals receiving either one of the DFM treatments. This study highlights the importance of rigorously testing specific strains for the desired activity. While both DFM treatments showed some improvement in carcass-based performance, only NP51 (NPC 747) showed significant reductions in E. coli O157:H7 as a preharvest intervention.

The results of a study by Peterson et al.11 conducted over 2 years also showed reduced E. coli O157:H7 shedding in cattle supplemented with a high dose of NP51. When compared with the control group, the treatment group receiving NP51 was 35 percent less likely to shed E. coli O157:H7. However, the researchers did not find any significant differences between the control and NP51 cattle concerning feed intake and efficiency. There was a trend for higher yield grades for cattle supplemented with NP51.

Varied dose levels and combinations of DFM strains were studied by Younts-Dahl et al.[9] to determine the supplementation needed for maximum efficacy for reduction of E. coli O157:H7. The study results indicated that the high dose of 109 CFU/head/day of NP51 was the most effective at reducing Escherichia coli O157 in fecal and hide samples. In a similar study by Stephens et al.,[12] cattle were randomly allocated to five treatment groups. These included a control group and cattle supplemented with 109 CFU/head/day of strain NP28, 109 CFU/head/day of strain NP51, 109 CFU/head/day of strain NP35 and 108 CFU/head/day of both NP51 and NP35. This study looked at the prevalence as well as the enumeration of E. coli O157 in each treatment group. The prevalence of E. coli O157 was 26.3, 13.0, 11.0, 22.0 and 11.0 percent for the control group and the groups receiving NP51, NP28, NP35 and NP51-NP35, respectively. Statistically lower concentrations of E. coli O157 were observed in the treatment groups receiving NP51, NP28 and NP51-NP35. This study further illustrates the strain-dependent differences in results. On an E. coli O157:H7 concentration basis, the treatment groups receiving NP51, NP28 and NP51-NP35 had significantly lower concentrations when compared with controls.

In an additional study by Stephens et al.,[13] steers were allocated to one of the following treatments: 1) control; 2) low dose: 1 × 107 CFU NP51 + 1 × 109 CFU Propionibacterium freudenreichii NP24; 3) medium dose: 5 × 108 CFU NP51 + 5 × 109 CFU NP24; and 4) high dose: 1 × 109 CFU NP51 + 1 × 109 CFU NP24. Feces and hide swabs were collected from each animal after slaughter and analyzed for E. coli O157 and Salmonella. When compared with controls, the high-, medium- and low-dose groups were 74 percent (p<0.01), 35 percent (p=0.26) and 69 percent (p<0.01) less likely to shed E. coli O157 in feces. For the hide results, E. coli O157 was 55 percent (p=0.17), 64 percent (p=0.11) and 74 percent (p=0.05) less likely to be isolated from the high-, medium- and low-dose treatment groups, respectively. In fecal samples, Salmonella was less likely to be shed by 48 percent (p=0.09), 38 percent (p=0.20) and 10 percent (p=0.78) for the high-, medium- and low-dose groups, respectively. For the high- and low-dose groups, Salmonella was less likely to be isolated from hides by 14 percent (p=0.72) and 32 percent (p=0.35), respectively. However, for the medium-dose group, Salmonella was 110 percent (p=0.83) more likely to be isolated on hides when compared with controls.

Salmonella Presence in Cattle Lymph Nodes
In addition to E. coli O157:H7, Salmonella is also a concern. Several publications have documented Salmonella internalized and isolated from lymph nodes in cattle.[14, 15] Lymph nodes in the chuck and flank regions of a beef carcass often are incorporated into the trimmings used to produce ground beef. If these lymph nodes are contaminated with Salmonella, they could potentially increase the amount of ground beef contaminated with Salmonella. Arthur et al.16 detected Salmonella in the flank lymph nodes of 3.86 percent of cull cattle and 1.05 percent of fed cattle samples. Current postharvest interventions such as organic acid washes and steam pasteurization cabinets will treat only the surface of the carcass and will not reduce internal lymph node contamination with Salmonella.

In recent research, the use of the DFM NP51 was investigated as a potential way to reduce Salmonella harbored within cattle lymph nodes. In two separate studies, very favorable results were observed for decreasing Salmonella in the lymph nodes of cattle at slaughter. This research will soon be published and will be an important resource for the food industry to combat Salmonella contamination of ground beef.

Conclusion
In today’s world, food safety has gained more and more recognition due to tragic foodborne illness outbreaks. The food industry as a whole has implemented many innovative food safety interventions to protect public health. The use of DFM as a preharvest food safety intervention is one of those innovative tools to aid in the reduction of beef product contamination and to thereby decrease foodborne illness.  

Mindy M. Brashears, Ph.D., is a professor of food safety and public health and the director of the International Center for Food Industry Excellence at Texas Tech University.

Lacey M. Guillen, Ph.D., is a postdoctoral research associate in the animal and food sciences department at Texas Tech University.


References
1. Fuller, R. 1989. Probiotics in man and animals. J Appl Bacteriol 66:365–378.
2. www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074707.htm.
3. Van Donkersgoed, J., T. Graham and V. Gannon. 1999. The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. Can Vet J 40:332–338.
4. Barham, A.R., et al. 2002. Effects of the transportation of beef cattle from the feedyard to the packing plant on prevalence levels of Escherichia coli O157 and Salmonella spp. J Food Prot 65:280–283.
5. Barkocy-Gallagher, G.A., et al. 2003. Seasonal prevalence of shiga-toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66:1978–1986.
6. Fluckey, W.M., et al. 2007. Escherichia coli isolates from cattle feces, hides, and carcasses. J Food Prot 70:551–556.
7. Brashears, M.M., et al. 2003. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot 66:748–754.
8. Younts-Dahl, S.M., et al. 2004. Dietary supplementation with Lactobacillus- and Propionibacterium-based direct-fed microbials and prevalence of Escherichia coli O157 in beef feedlot cattle and on hides at harvest. J Food Prot 67:889–893.
9. Younts-Dahl, S.M., et al. 2005. Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials. J Food Prot 68:6–10.
10. Woerner, D.R., et al. 2006. Preharvest processes for microbial control in cattle. Food Prot Trends 26:393–400.
11. Peterson, R.E., et al. 2007. Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 fecal shedding and finishing performance in beef feedlot cattle. J Food Prot 70:287–291.
12. Stephens, T.P., et al. 2007. Prevalence and enumeration of Escherichia coli O157 in steers receiving various strains of Lactobacillus-based direct-fed microbials. J Food Prot 70:1252–1255.
13. Stephens, T.P., et al. 2007. Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. J Food Prot 70:2386–2391.
14. Paulin, S.M., et al. 2002. Analysis of Salmonella enterica serotype-host specificity in calves: Avirulence of S. enterica serotype gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infection and Immunity 70:6788–6797.
15. Costa, L.F., et al. 2012. Salmonellosis in cattle: Advantages of being an experimental model. Res Vet Sci 93:1–6.
16. Arthur, T.M., et al. 2008. Prevalence and characterization of Salmonella in bovine lymph nodes potentially destined for use in ground beef. J Food Prot 71:1685–1688.

>
Author(s): Mindy M. Brashears, Ph.D., and Lacey M. Guillen, Ph.D.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • people holding baby chicks

    Serovar Differences Matter: Utility of Deep Serotyping in Broiler Production and Processing

    This article discusses the significance of Salmonella in...
    Testing & Analysis
    By: Nikki Shariat Ph.D.
  • woman washing hands

    Building a Culture of Hygiene in the Food Processing Plant

    Everyone entering a food processing facility needs to...
    Facilities
    By: Richard F. Stier, M.S.
  • graphical representation of earth over dirt

    Climate Change and Emerging Risks to Food Safety: Building Climate Resilience

    This article examines the multifaceted threats to food...
    Risk Assessment
    By: Maria Cristina Tirado Ph.D., D.V.M. and Shamini Albert Raj M.A.
Subscribe For Free!
  • eMagazine Subscription
  • Subscribe to eNewsletter
  • Manage My Preferences
  • Website Registration
  • Subscription Customer Service

Food Safety Five Ep. 9: Major Changes at FDA, CDC, USDA Under Trump Administration

Food Safety Five Ep. 9: Major Changes at FDA, CDC, USDA Under Trump Administration

Food Safety Five Ep. 10: Scientific Advancements in Listeria Knowledge and Detection

Food Safety Five Ep. 10: Scientific Advancements in Listeria Knowledge and Detection

Food Safety Five Ep. 11: New Foodborne Illness Data and Research From CDC

Food Safety Five Ep. 11: New Foodborne Illness Data and Research From CDC

Food Safety Five Ep. 12: New Sanitation and Growth Prediction Methods for Listeria

Food Safety Five Ep. 12: New Sanitation and Growth Prediction Methods for Listeria

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Food Safety Magazine audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Food Safety Magazine or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • Deli Salads
    Sponsored byCorbion

    How Food Safety is Becoming the Ultimate Differentiator in Refrigerated and Prepared Foods

Popular Stories

Image of Tyson Foods logo and the logos of Tyson Foods brands

Tyson Foods is Reformulating Food Products to Eliminate Petroleum-Based Synthetic Dyes

USDA building.jpg

More Than 15,000 USDA Employees Take Trump Administration's Resignation Offer

Woman reading the warning label on a bottle of wine

A 40-Year Hangover: Efforts to Revive 1980s Advocacy About the Potential Negative Effects of Alcohol Consumption

Events

May 12, 2025

The Food Safety Summit

Stay informed on the latest food safety trends, innovations, emerging challenges, and expert analysis. Leave the Summit with actionable insights ready to drive measurable improvements in your organization. Do not miss this opportunity to learn from experts about contamination control, food safety culture, regulations, sanitation, supply chain traceability, and so much more.

May 13, 2025

Traceability Next Steps—Supply Chain Implementation

Live Streaming from the Food Safety Summit: Join us for this engaging and highly practical workshop focused on building and sustaining traceability efforts across the food supply chain. 

May 13, 2025

Effective Sanitation Basics

Live Streaming from the Food Safety Summit: This dynamic workshop will help participants understand the sanitation process, effective monitoring, use of data streams, and root cause analysis basics.

View All

Products

Global Food Safety Microbial Interventions and Molecular Advancements

Global Food Safety Microbial Interventions and Molecular Advancements

See More Products
Environmental Monitoring Excellence eBook

Related Articles

  • Food Safety Matters

    Elanco: Preharvest Poultry Interventions

    See More
  • cows on a farm

    Key Preharvest Pathogen Interventions for Beef: Herd Health, Management, and Biosecurity

    See More

Related Products

See More Products
  • global food.jpg

    Global Food Safety Microbial Interventions and Molecular Advancements

  • 1119237963.jpg

    Food Safety in China: Science, Technology, Management and Regulation

  • 9781138070912.jpg

    Trends in Food Safety and Protection

See More Products

Related Directories

  • Mecmesin USA trading as PPT Group Corp.

    Mecmesin high-quality texture testing solutions, deliver outstanding performance and longevity, as well as an affordable alternative to many higher-priced systems on the market.
  • Arm & Hammer Animal and Food Production

    At Arm & Hammer Animal and Food Production, the & in our name is more than a symbol. It’s our belief there is always room for another #ScienceHearted solution. ARM & HAMMER is the only global food chain partner integrating comprehensive & diverse technologies for animal & food production systems.
×

Never miss the latest news and trends driving the food safety industry

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

Food Safety
search
cart
facebook twitter linkedin
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Safety
  • NEWS
    • Latest News
    • White Papers
  • PRODUCTS
  • TOPICS
    • Contamination Control
    • Food Types
    • Management
    • Process Control
    • Regulatory
    • Sanitation
    • Supply Chain
    • Testing and Analysis
  • PODCAST
  • EXCLUSIVES
    • Food Safety Five Newsreel
    • eBooks
    • FSM Distinguished Service Award
    • Interactive Product Spotlights
    • Videos
  • BUYER'S GUIDE
  • MORE
    • ENEWSLETTER >
      • Archive Issues
      • Subscribe to eNews
    • Store
    • Sponsor Insights
  • WEBINARS
  • FOOD SAFETY SUMMIT
  • EMAG
    • eMagazine
    • Archive Issues
    • Editorial Advisory Board
    • Contact
    • Advertise
  • SIGN UP!